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Abstract—Affective brain-computer interface (aBCI) 

introduces personal affective factors into human-computer 
interactions, which could potentially enrich the user’s experience 
during the interaction with a computer. However, affective neural 
patterns are volatile even within the same subject. To maintain 
satisfactory emotion recognition accuracy, the state-of-the-art 
aBCIs mainly tailor the classifier to the subject-of-interest and 
require frequent re-calibrations for the classifier. In this paper, we 
demonstrate that the recognition accuracy of aBCIs deteriorates 
when re-calibration is ruled out during the long-term usage for the 
same subject. Then, we propose a stable feature selection method 
to choose the most stable affective features, for mitigating the 
accuracy deterioration to a lesser extent and maximizing the aBCI 
performance in the long run. We validate our method on a dataset 
comprising six subjects’ EEG data collected during two sessions 
per day for each subject for eight consecutive days. 

Keywords—Electroencephalography (EEG), stable feature, 
feature selection, emotion recognition, intra correlation coefficient 
(ICC) 

I. INTRODUCTION 
The state-of-the-art EEG-based emotion recognition 

algorithms tailor the classifier to each individual user, requiring 
a calibration session before the subject starts to use the system. 
However, due to the volatile affective neural patterns, frequent 
re-calibrations are needed during use to maintain satisfactory 
recognition accuracy. A great amount of the existing studies [1-
11] investigate and report only the short-term performance of an 
affective BCI. In these studies, affective EEG data are collected 
within a short period of time, usually in one single day within 
one experiment session. K-fold cross-validations are carried out 
to assess the system performance. The recognition accuracy 
assessed in this way is over-optimistic and can hardly represent 
the system performance in the long run, especially when no re-
calibration is allowed during use. On the other hand, there is 
little study of the long-term affective BCI performance. We 
devote this paper to the investigation of affective BCI 

performance over a long course of time. As the (re-)calibration 
process may be time-consuming, tedious and laborious, we are 
motivated to mitigate the burden of frequent re-calibrations on 
the user of interest. Ideally, a stable affective EEG feature should 
give consistent measurement of the same emotion on the same 
subject over a long course of time. We hypothesize that unstable 
features may worsen the recognition performance of the BCI in 
the long run. By using stable EEG features, recognition accuracy 
may be improved. We introduce an ANOVA-based method to 
quantify the stability score of the state-of-the-art affective EEG 
features. We then propose a stable feature selection method to 
choose the optimal set of stable features that maximize the 
recognition accuracy of the system in the long run. 

This paper is organized as follows. Section II explains the 
methodologies. Section III documents the experiments. Section 
IV presents the results with discussions. Section V concludes 
this chapter. 

II. METHODS 

A. Feature Extraction 
1) Fractal Dimension 
Let 𝒙 ∈ ℝ  denote a column vector of 𝑛  EEG time series 

samples (raw signals) from one channel. Construct 𝑘 new time 
series by re-sampling 𝒙 as follows. 𝒙  =  ቂ𝒙(𝑚), 𝒙(𝑚 + 𝑘), … , 𝒙 ቀ𝑚 + ቔି ቕ 𝑘ቁቃୃ , 𝑚 = 1, 2, … , 𝑘, (1) 

where ⌊∙⌋ denotes the floor function, 𝑚  the initial time series 
sample and 𝑘 the interval. We compute the length of the curve 
for each new series as follows. 

 𝑙 = ଵ  ቊቆ∑ |𝒙(𝑚 + 𝑖𝑘) − 𝒙(𝑚 + (𝑖 − 1)𝑘)|ቔషೖ ቕୀଵ ቇቋ ቆ ିଵቔషೖ ቕቇ, (2) 

Let 𝑙  denote the mean of 𝑙 for 𝑚 =  1, 2, …  𝑘, the fractal 
dimension of time series 𝒙 is computed as [12] 
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 𝐹𝐷 = − lim→ஶ ୪୭(ೖ)୪୭() ,  (3) 

Apparently, in numerical evaluation, it is not possible for 𝑘 
to be infinite. It has proven [13, 14] that the computed fractal 
value approximates the true, theoretical fractal value reasonably 
well given a reasonably large 𝑘. Based on the study in [14], k = 
32 yields a good balance between accuracy and computational 
resources required. In this study, we follow the same parameter 
setting. 

2) Statistics 
A set of six statistical features were adopted in [15] for EEG-

based emotion recognition, which, in combination with the 
fractal dimension feature, have been demonstrated to improve 
the classification accuracy [15]. Six statistical features are 
computed as follows. 

Mean of the raw signals: 

 𝜇௫ = ଵ ∑ 𝒙(𝑖)ୀଵ , (4) 

Standard deviation of the raw signals: 

 𝜎௫ = ට ଵିଵ ∑ (𝒙(𝑖) − 𝜇௫)ଶୀଵ , (5) 

Mean of the absolute values of the first order difference of 
the raw signals: 

 𝛿௫ = ଵିଵ ∑ |𝒙(𝑖 + 1) − 𝒙(𝑖)|ିଵୀଵ ,  (6) 

Mean of the absolute values of the first order difference of 
the normalized signals: 

 𝛿ሚ௫ = ଵିଵ ∑ |𝒙(𝑖 + 1) − 𝒙(𝑖)| = ఋೣఙೣିଵୀଵ ,  (7) 

Mean of the absolute values of the second order difference 
of the raw signals: 

 𝛾௫ = ଵିଶ ∑ |𝒙(𝑖 + 2) − 𝒙(i)|ିଶୀଵ ,  (8) 

Mean of the absolute values of the second order difference 
of the normalized signals: 

 𝛾௫ = ଵିଶ ∑ |𝒙(𝑖 + 2) − 𝒙(𝑖)| = ఊఙೣೣିଶୀଵ .  (9) 

In (4)–(9), 𝒙  denotes the normalized (zero mean, unit 
variance) signals, i.e., 𝒙 = (𝒙 − 𝜇௫)/𝜎௫. 

3) Spectral Band Power 
Spectral band power, or simply “power”, is one of the most 

extensively used features in EEG-related research [1, 3, 7, 9, 11]. 
In EEG study, there is common agreement on partitioning the 
EEG power spectrum into several sub-bands (though the 
frequency range may slightly differ from case to case): alpha 
band, theta band, beta band etc. In our study, the EEG power 
features from theta band (4 – 8 Hz), alpha band (8 – 12 Hz), and 
beta band (12 – 30 Hz) are computed. 

The power features are obtained by first computing the 
Fourier Transform on the EEG signals. The discrete Fourier 
Transform transforms a time-series 𝒙 = ሾ𝒙(1), 𝒙(2), … , 𝒙(𝑁)ሿୃ to 
another series 𝒔 = ሾ𝒔(1), 𝒔(2), … , 𝒔(𝑁)ሿୃ in a frequency domain. 𝒔 is computed as 

 𝒔(𝑘) = ∑ 𝒙(𝑛)𝑒ିೕమഏೖಿேିଵୀ , (10) 

where 𝑁  is the number of sampling points. Then, the power 
spectrum density is computed as 

 𝒔ො(𝑘) = ଵே |𝒔(𝑘)|ଶ,  (11) 

Lastly, the spectral band power features are computed by 
averaging the power spectrum density 𝒔ො(𝑘)  over the targeted 
sub-band. E.g., the alpha band power is computed by averaging 𝒔ො(𝑘) over 8 – 12 Hz. 

4) Higher Order Crossing 
Higher Order Crossings (HOC) was proposed in [16] to 

capture the oscillatory pattern of EEG, and used in [15, 17-19] 
as features to recognize human emotion from EEG signals. The 
HOC is computed by first zero-meaning the time-series 𝒙 as 

 𝒛(𝑖) = 𝒙(𝑖) − 𝜇௫, (12) 

where 𝒛 is the zero-meaned series of 𝒙 and 𝜇௫  the mean of 𝒙 
computed as per (4). Then, a sequence of filter ∇ is successively 
applied to 𝒛, where ∇ is the backward difference operator, ∇≡𝒛(𝑖) − 𝒛(𝑖 − 1). Denote the kth-order filtered sequence of 𝒛 as 𝝃(𝒛), 𝝃(𝒛) is obtained by iteratively applying ∇ on 𝒛, as 

 𝝃(𝒛) = ∇ିଵ𝒛, ∇𝒛 = 𝒛. (13) 

Then, as its name suggests, the feature consists in counting 
the number of zero-crossing, which is equivalent to the times of 
sign changes, in sequence 𝝃(𝒛). We follow [15] and compute 
the HOC feature of order k = 1, 2, 3, …, 36. 

5) Signal Energy 
The signal energy is the sum of squared amplitude of the 

time-series signal [20], computed as 

 ε = ∑ |𝒙(𝑖)|ଶ .  (14) 

6) Hjorth Feature 
Hjorth [21] proposed three features of a time-series, which 

have been used as affective EEG features in [22, 23]. 

Activity: 

 𝑎(𝒙) = ଵ ∑ (𝒙(𝑖) − 𝜇௫)ଶୀଵ , (15) 

where 𝜇௫ is the mean of 𝒙 computed as per (4). 

Mobility: 

 𝑚(𝒙) = ට୴ୟ୰(𝒙ሶ )୴ୟ୰(𝒙),  (16) 

where 𝒙ሶ  is the time derivative of the time-series 𝒙, and var(·) is 
the variance operator. 

Complexity: 

 𝑐(𝒙) = (𝒙ሶ )(𝒙), (17) 

which is the mobility of the time derivative of 𝒙  over the 
mobility of 𝒙. 

B. Feature Stability Measurement 
The stability of feature parameters was quantified by the 

Intraclass Correlation Coefficient (ICC). ICC allows for the 
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assessment of similarity in grouped data. It describes how well 
the data from the same group resemble each other. ICC was 
often used in EEG stability study [24, 25]. ICC is derived from 
a one-way ANOVA model and defined as [26] 

 ICC = ெௌಳିெௌೈெௌಳା(ିଵ)ெௌೈ,  (18) 

where 𝑀𝑆 , 𝑀𝑆ௐ and 𝑘 denote the mean square error between 
groups, the mean square error within group, and the number of 
samples in each group, respectively. A larger ICC value 
indicates higher similarity among group data. ICC tends to one 
when there is absolute agreement among the grouped data, i.e., 𝑀𝑆ௐ = 0. A smaller ICC value suggests a lower similarity level. 
ICC value can drop below zero in the case when 𝑀𝑆ௐ is larger 
than 𝑀𝑆, accounting for dissimilarity among the grouped data. 

C. Stable Feature Selection 
A stable affective EEG feature should give consistent 

measurements of the same emotion on the same subject over the 
course of time, therefore there is the possibility to reduce the 
need of re-calibration by using the stable features. To this end, 
we propose a stable feature selection method based on ICC score 
ranking. The proposed method consists of three steps: ICC 
assessment, ICC score ranking, and iterative feature selection. 

We assess the long-term stability of different EEG features 
with ICC. Let 𝑿 be the matrix of feature parameters of a specific 
kind of feature, rows of 𝑿 correspond to different emotions, and 
columns of 𝑿  correspond to different repeated measurements 
over the course of time. Intuitively, we want the feature 
parameters to be consistent when measuring the same emotion 
repeatedly over the course of time. Therefore, we want the 
parameters within the same row to be similar to each other. 
Moreover, we want the parameters measuring different affective 
states to be discriminative, so that different affective states are 
distinguishable. Therefore, we want different rows to be 
dissimilar to each other. The ICC measurement takes both 
considerations into account. The ICC is computed as per (18), 
which is based on ANOVA. For clarity, we display 𝑿 in the 
ANOVA table as in Table I. In Table I, we refer treatment to 
different emotions induced by specific affective stimuli. 𝑥  is 
the feature parameter of the j-th measurement of emotion 𝑖. 𝑥∙ is 
the sum of all measurements of emotion 𝑖, 𝑥∙ = ∑ 𝑥ୀଵ . �̅�∙ is 
the average of all measurements of emotion 𝑖 , �̅�∙ = (1/𝑘) ∑ 𝑥ୀଵ . 𝑥∙∙ is the sum of all measurements over all emotions, 𝑥∙∙ = ∑ ∑ 𝑥ୀଵୀଵ . �̅�∙∙ is the average of all measurements over all 
emotions, �̅�∙∙ = (1/𝑛𝑘) ∑ ∑ 𝑥ୀଵୀଵ . 

We can obtain the stability score 
of each feature by computing the 
ICCs, thereafter, we rank the feature 
according to the stability score in 
descending order. Features with 
higher ICC are more stable over the 
course of time, and exhibit better 
discriminability among different 
emotions. Our proposed feature 
selection method consists in 
iteratively selecting the top stable 
features and validating the inter-
session emotion recognition 
accuracy. The feature subset that 

yields the best accuracy is retained. 

III. EXPERIMENTS 

A. Data Collection 
The stability of affective EEG features is of our interest of 

investigation. In contrast to existing affective EEG benchmark 
dataset such as the DEAP dataset [27], which includes a 
relatively large number of subjects but only one EEG recording 
session within one day for each subject, we designed and carried 
out an experiment to collect the affective EEG data from 
multiple sessions during the course of several days. This 
preliminary study included six subjects, five males and one 
female, aged 24 – 28. All subjects reported no history of mental 
diseases or head injuries. Two sessions were recorded per day 
for each subject for eight consecutive days, i.e., 16 sessions were 
recorded for each subject. An Emotiv EEG device [28] was used 
to record the EEG data at a sampling rate of 128Hz. Each session 
consisted of four trials, with each trial corresponding to one 
induced emotion, i.e., four emotions were elicited in one session, 
so totally each subject has 4×2×8 = 64 trials. There are standard 
affective stimuli libraries such as International Affective Picture 
System (IAPS) [29] and International Affective Digitized 
Sounds (IADS) [30]. In our study, the IADS was chosen for the 
experiment design as during the exposure of the subjects to the 
audio stimuli, the subjects can keep their eyes closed and hence 
avoid possible ocular movements which could contaminate the 
EEG signals. The emotion induction experiment protocol 
followed work [10]. Sound clips from the same category of the 
IADS were chosen and concatenated to make a 76-second audio 
file, with the first 16 seconds silent to calm the subject down. 
Four audio files were used as stimuli to evoke four different 
emotions, namely pleasant, happy, angry and frightened. During 
each session of the experiment only one subject was invited to 
the lab and was well-instructed about the protocol of the 
experiment. The subject wore the Emotiv EEG device and a pair 
of earphones with volume properly adjusted, and he/she was 
required to sit still with eyes closed and avoided muscle 
movements as much as possible to reduce possible artifacts from 
eyeballs movement, teeth clenching, neck movement etc. 
Following each trial, the subject was required to complete a self-
assessment to describe his emotion (happy, frightened etc.). This 
self-assessment was used as a ground truth to assess that the 
subject has experienced the target emotion we wish to induce. 
The protocol of this emotion induction experiment is depicted in 
Fig. 1. 

TABLE I THE ANALYSIS OF VARIANCE TABLE. 

Treatment 
(emotion) 

Measurement Total Average 1  𝑥ଵଵ  𝑥ଵଶ  ⋯  𝑥ଵ 𝑥ଵ∙ �̅�ଵ∙2  𝑥ଶଵ  𝑥ଶଶ  ⋯  𝑥ଶ 𝑥ଶ∙ �̅�ଶ∙⋮  ⋮  ⋮  ⋱  ⋮  ⋮ ⋮𝑛  𝑥ଵ  𝑥ଶ  ⋯  𝑥 𝑥∙ �̅�∙
     𝑥∙∙ �̅�∙∙

Source of variance Sum of squares Degree of freedom Mean square 
Between treatment 𝑆𝑆 = 𝑘 ∑ (�̅�∙ − �̅�∙∙)ଶୀଵ   𝑛 − 1 𝑀𝑆 = 𝑆𝑆/(𝑛 − 1) 
Within treatment 𝑆𝑆ௐ = 𝑆𝑆் − 𝑆𝑆  𝑛𝑘 − 𝑛 𝑀𝑆ௐ = 𝑆𝑆ா/(𝑛𝑘 − 𝑛)

Total 𝑆𝑆் = ∑ ∑ ൫𝑥 − �̅�∙∙൯ଶୀଵୀଵ   𝑛𝑘 − 1   
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B. Simulation 1: With Re-calibration 
In this experiment, we simulate the recognition performance 

of an affective BCI where re-calibration of the system can be 
carried out each time before the subject uses the system. 
Specifically, we evaluate the within-session cross-validation 
recognition accuracy using the state-of-the-art affective EEG 
features referenced in Table II. 

We base the simulation on the EEG data we collected in 
Section III.A. Each EEG trial lasts for 76 seconds. We discard 
both ends of the EEG trial and retain the middle part of the EEG 
trial for the subsequent processing, based on the assumption that 
emotions are better elicited in the middle of the trial. The 
division of the EEG trial is illustrated in Fig. 2. EEG features are 
extracted out of the valid segments of the EEG trials on a sliding-
windowed basis. The final feature vector is a concatenation of 
the feature vectors from channel AF3, F7, FC5, T7, and F4, 
which were justified in [14] to be the top five discriminative 
channels concerning emotion recognition. The width of the 
window is 4-second, and the step of the move is 1-second, as 
was used in [14]. Thus, each valid segment yields 7 samples. 

In this within-session cross-validation evaluation, the 
training data and test data are from the EEG trials within the 
same session. As the time gap between the acquisition of 
training and test data is minimal, the evaluation can approximate 
the performance of the BCI where calibration is carried out 
shortly before use. We use one valid segment as the training data 
and the other as the test data, and repeat the process until each 
segment has served as the test data for once. The per-session 
recognition accuracy is averaged across all possible runs. In this 
very case, the evaluation is repeated twice per session, which is 
referred to as a two-fold cross validation. As we recognize four 
emotions in each session, the training data comprise 7×4 = 28 
samples for four emotions, totally. Likewise, the test data consist 
of 28 samples for four emotions. We adopt the Logistic 
Regression (LR) [31] classifier. The simulation is implemented 
in MATLAB R2017a, where we use the MATLAB built-in 
toolbox of the LR classifier with the default hyperparameters. 
The evaluation is carried out for each of the subjects on a 
session-by-session basis. The mean classification accuracy over 
16 sessions and the standard deviations are displayed in Table 
III. 

C. Simulation 2: Without Re-calibration 
In this experiment, we simulate the recognition performance 

where no re-calibration is allowed during the long-term use of 
the BCI. We evaluate the inter-session leave-one-session-out 
cross-validation accuracy of the system for this purpose. Recall 

that in our dataset, we have 16 recording sessions per subject 
throughout the course of eight days. In this evaluation, we 
reserve one session as the calibration session whose EEG data 
are used to train the classifier, and pool together the data from 
the remaining 15 sessions as test data. We repeat the evaluation 
until each session has served as calibration session for once. In 
this very case, the process will be repeated 16 times per subject, 
and the reported recognition accuracy is the mean accuracy of 
16 runs. This evaluation is to simulate the system performance 
in the long run, since there is a longer time gap between the 
training session and testing sessions—up to eight days. We 
adopt the features referenced in Table II in this simulation, in the 
same sliding-windowed manner as in Section III.B. We use only 
the valid segment 1 (see Fig. 2) of each EEG trial and reserve 
the valid segment 2 for the testing purpose in Simulation 3 
introduced in the following section. The sliding-windowed 
feature extraction yields 7 samples per valid segment. The 
training data consist of 7×4 = 28 samples for four emotions 
recorded in the same session. The test data comprise 7×4×15 = 
420 samples pooled together from the remaining 15 sessions. 
The mean classification accuracy over 16 runs and the standard 
deviations are displayed in Table IV. 

D. Simulation 3: Stable Feature Selection 
In this experiment, we validate the effect of our proposed 

stable feature selection algorithm based on the simulation of 
emotion recognition where no re-calibration is allowed during 
the long-term use of the BCI. This simulation is similar to 
simulation 2, with the focus on the comparison between the 
state-of-the-art feature set and the stable feature set we propose. 

We propose to find the stable features on a subject-
dependent basis. The subject-dependent evaluation intends to 
find subject-specific stable features for each subject. We 
quantify the long-term feature stability by computing the ICC 
scores on the training set consisting of the valid segment 1 (see 
Fig. 2) from all available trials (16 trials per subject), rank the 
feature according to the stability scores, and retain the optimal 
subset of features pertinent to the subject in question that 
maximizes the recognition accuracy when iteratively evaluating 
the inter-session leave-one-session-out cross-validation 
accuracy using the top 𝑛 stable features. The results are shown 
in Table V and Fig. 3. After we find the stable features, we 
evaluate the performance of the stable features on the test set 
comprising the valid segment 2 (see Fig. 2) from all available 
trials. The recognition performance on the test set is shown in 
Table VI. 

 

 
Fig. 1 Protocol of emotion induction experiment. 

 
Fig. 2 Division of the EEG trial. EEG data at both ends are discarded. The 
middle part is retained and divided into two valid segments of the same 
length. Only valid segments are used for the subsequent processing. 

TABLE II REFERENCED STATE-OF-THE-ART AFFECTIVE EEG FEATURES 

Feature (dimension, abbreviation) Reference 
6 statistics (30, STAT) [9, 10, 15, 36, 37]
36 higher order crossings (180, HOC) [15, 17-19]
Fractal dimension + 6 statistics + 36 higher order 
crossings (215, FD1) 

[10, 15] 

Fractal dimension + 6 statistics (35, FD2) [10, 15]
3 Hjorth (15, HJORTH) [21, 22]
Signal energy (5, SE) [20]
Spectral power of 𝛿, 𝜃, 𝛼, and 𝛽 bands (20, POW) [1, 4, 9, 38] 
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IV. RESULTS AND DISCUSSIONS 

A. Simulation 1: With Re-calibration 
Table III shows the mean accuracy ± standard deviation per 

subject based on the 2-fold cross-validation evaluation, which 
simulates the use case where re-calibration is allowed each time 
before a subject uses the BCI. The recognition accuracies vary 
between subjects and features, ranging from 28.37 % (Subject 5, 
HOC) to 76.23 % (Subject 6, FD2). HOC is found to be inferior 
to other referenced features on all subjects. The best performing 
feature varies between subjects. For subject 1, 2, 3, 5, and 6, 
referenced feature set FD2 yield better recognition accuracy 
than other referenced features in most cases. For subject 2, FD2, 
POW and HJORTH features give similar performance, 
outperforming other referenced features. For subject 4, STAT, 
FD2 and HJORTH features yield comparable results, being 
better than other referenced features. In general, FD2 performs 
well on all subjects in this simulation, which may suggest that 
FD2 is good for the use case where re-calibration is allowed 
from time to time. 

For a four-class classification task, the theoretical chance 
level of random guess is 25.00 %. However, it is known that the 
real chance level is dependent on the classifier as well as the 
number of test samples. For an infinite number of test samples, 
the real chance level approaches the theoretical value. For a 
finite number of test samples, the real chance level is computed 
based on repeated simulations of classifying samples with 
randomized class label, as is suggested in [32, 33]. We carry out 
such simulation and present also in Table III the upper bound of 
the 95 % confidence interval of the simulated chance level for 

the best performing feature (in bold) for each classifier. Results 
show that the best-performing features yield recognition 
accuracy higher than the upper bound of the chance level. We 
assert that the best-performing features perform significantly 
better than chance level at a 5 % significance level. 

B. Simulation 2: Without Re-calibration 
Table IV shows the mean accuracy ± standard deviation per 

subject based on inter-session leave-one-session-out cross-
validation evaluation, which simulates the long-term 
recognition performance of the BCI when no re-calibration is 
permitted during use. Notable accuracy drop can be observed, 
compared to when re-calibration is allowed at each new session. 
This experiment establishes that intra-subject variance of 
affective feature parameters does exist and does have a negative 
impact on the recognition performance, though the severity 
varies from subject to subject. For subject 2 and 3, the 
recognition performance is severely affected by the variance—
the best recognition performance has dropped and fallen within 
the 95 % confidence interval of the simulated chance level. We 
therefore assert that subject 2 and 3 are performing at random 
guess level. For subject 1, 4 and 6, the best performance remains 
significantly better than the chance level at 5 % significance 
level, which seems to suffer from the variance problem to a 
lesser extent. Subject 5 gives mediocre performance. We loosely 
categorize subject 1, 4, and 6 as good performer, subject 5 as 
moderate performer and subject 2 and 3 as weak performer. 

C. Simulation 3: Stable Feature Selection 
To improve the long-term recognition accuracy, we propose 

to use stable features to mitigate the intra-subject variance of the 

TABLE III FOUR-EMOTION RECOGNITION ACCURACY OF SIMULATION 1, MEAN ACCURACY (%) ± STANDARD DEVIATION (%) 

Feature Subject 
1 2 3 4 5 6 

STAT 56.81 ± 10.52 44.75 ± 16.66 43.64 ± 13.89 71.43 ± 14.32 47.92 ± 15.44 73.88 ± 15.29
HOC 32.25 ± 10.50 30.25 ± 10.05 28.46 ± 10.24 43.53 ± 12.20 28.37 ± 10.95 36.61 ± 12.29
FD1 43.08 ± 13.98 37.39 ± 12.58 33.59 ± 8.12 58.59 ± 13.40 39.58 ± 12.05 54.58 ± 11.03
FD2 57.14 ± 9.93 46.88 ± 17.25 45.76 ± 13.01 72.54 ± 14.49 48.91 ± 15.42 76.23 ± 15.51

HJORTH 53.24 ± 11.81 46.65 ± 14.30 41.41 ± 14.39 72.77 ± 17.82 47.92 ± 15.67 72.54 ± 18.78
SE 45.54 ± 15.95 40.63 ± 12.67 41.96 ± 17.57 59.49 ± 16.23 41.96 ± 18.90 62.83 ± 20.02

POW 48.66 ± 12.21 46.88 ± 17.72 36.05 ± 14.70 69.20 ± 15.83 42.26 ± 18.03 62.72 ± 16.00
Upp Chan Lvl 42.79 42.80 42.79 39.36 42.70 42.79

TABLE IV FOUR-EMOTION RECOGNITION ACCURACY OF SIMULATION 2, MEAN ACCURACY (%) ± STANDARD DEVIATION (%) 

Feature Subject 
1 2 3 4 5 6 

STAT 37.95 ± 5.01 24.79 ± 1.77 25.61 ± 1.65 39.49 ± 6.95 27.00 ± 3.98 30.39 ± 6.24
HOC 26.55 ± 4.27 24.78 ± 2.72 25.51 ± 2.63 28.68 ± 4.01 25.68 ± 2.78 27.01 ± 3.05
FD1 28.93 ± 3.98 24.52 ± 2.27 25.13 ± 2.83 33.68 ± 5.58 25.82 ± 3.01 28.45 ± 3.67
FD2 37.38 ± 6.05 25.25 ± 2.68 25.16 ± 2.62 39.70 ± 7.10 27.52 ± 3.88 29.61 ± 6.25

HJORTH 31.77 ± 6.05 25.85 ± 3.33 27.05 ± 3.84 35.19 ± 8.13 26.32 ± 3.96 28.18 ± 4.82
SE 28.07 ± 2.83 25.80 ± 3.04 26.99 ± 2.79 38.35 ± 5.97 27.96 ± 4.37 28.53 ± 3.84

POW 30.49 ± 4.30 28.41 ± 4.25 28.01 ± 3.55 39.42 ± 6.44 27.63 ± 4.53 31.49 ± 6.94
Upp Chan Lvl 29.33 29.09 28.83 28.30 27.75 28.85

TABLE V FOUR-EMOTION RECOGNITION ACCURACY OF SIMULATION 3 USING THE TOP N STABLE FEATURES. MEAN ACCURACY (%) ± STANDARD 
DEVIATION (%) (# OF STABLE FEATURES) 

Feature Subject 
1 2 3 4 5 6 

Our Selected Stable Feature 41.55 ± 4.31 (2) 30.24 ± 5.14 (7) 33.87 ± 3.55 (5) 45.22 ± 4.57 (1) 30.68 ± 3.43 (42) 33.63 ± 7.99 (34)
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affective feature parameters. Ideally, stable feature should give 
consistent measurement of the same affective state over the 
course of time, therefore there is the possibility to mitigate the 
variance among repeated sessions on different days. We propose 
a feature selection method that consists in quantifying the long-
term stability of features with ICC model, ranking the features 
according to stability scores and iteratively selecting the topmost 
stable feature for inclusion into the stable feature subset. We 
propose to find the subject-dependent stable features. 

Fig. 3 presents the results of subject-dependent stable feature 
selection. The bar plot in Fig. 3 indicates the stability score given 
in ICC values. The higher the stability score, the less variance 
the feature exhibits. The stability scores are ranked in 
descending order. Table VII shows the ranking of the top 10 
most stable features and their respective ICC scores. As we can 
see, the feature stability varies from subject to subject. For 
subject 1 and 4, the stability scores of the topmost stable features 
are notably higher than that of the other subjects. Generally, we 
observe that only a fraction of the features carries positive 
stability scores. For those with negative stability score, it 
suggests that the variance of the feature parameters over the 
course of time is even larger than the variance of the feature 
parameters between different emotions. Intuitively, these 
unstable features contribute to the deterioration of long-term 
recognition performance. 

The curves superimposed on the bar plots indicate the inter-
session leave-one-session-out cross-validation accuracy for 
classifying four emotions using only the first 𝑛 stable features, 
with 𝑛 varying from 1 to 255. As we can see, the curves exhibit 
similar trend among all subjects. The accuracy peaks at a small 
subset of stable features, then deteriorates when more and more 
unstable features are included into the feature subset being 

examined as 𝑛 increases. For subject 2, 3, 4, 5, and 6, we can 
clearly see that the accuracy quickly deteriorates as features that 
carry negative stability scores are included into the feature 
subset being examined. This experiment shows the advantage of 
stable features over unstable features when the long-term 
performance is the utmost concern, and establishes the 
effectiveness of our proposed feature selection method. The 
peak recognition accuracy (peak of the accuracy curves in Fig. 
3) and the number of stable features needed to achieve the peak 
performance is given in Table V. Comparing Table V with Table 
IV, we can see that stable features selected by our algorithm 
have outperformed nearly all referenced features. Comparing 
our features to the best-performing referenced features in Table 
IV (bold values), our features improve the accuracy by 3.60 %, 
1.83 %, 5.86 %, 5.52 %, 2.72 %, and 2.14 %, for subject 1, 2, 3, 
4, 5, and 6, respectively. Moreover, our selected features have a 
smaller dimension than the referenced state-of-the-art features, 
mitigating the burden of classifier training. 

In addition, we observe that ICC value is in direct correlation 
with the long-term recognition performance, which validates our 
hypothesis that using stable features improves the accuracy. As 
can be seen from Fig. 3 (and also Table VII), the stability scores 
of the top stable features for subject 1 and subject 4 are notably 
higher than that for the other subjects. The long-term recognition 
performance of selected stable features of subject 1 and subject 
4 are also notably higher than that of the other subjects. 
Generally, the higher the stability score, the better the 
recognition accuracy. 

Looking at the subject-dependent feature ranking in Table 
VII, we can see that the feature ranking exhibits similar pattern 
among subject 1, 4, and 6. Statistic features top the stability 
ranking, together with Hjorth features and some HOCs. 

 

Subject 1 Subject 2 Subject 3 

 
Subject 4 Subject 5 Subject 6 

 
Fig. 3 ICC scores of each feature and the inter-session leave-one-session-out cross-validation accuracy using the top n stable features, 1 ≤ n ≤ 255. The 
features are ranked by the ICC score in descending order. 
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However, for subject 2, 3 and 5, different ranking patterns are 
observed. HOCs are found to be more stable, mixed with some 
power features and Hjorth features. Interestingly, HOC features 
have been frequently selected given their relatively high stability 
scores, despite their mediocre performance in Simulation 1 in 
Table III. It may suggest that HOC features exhibit good 
stability and are suitable for the use case where the long-term 
recognition performance shall be put into consideration. 
However, it is not the optimal features if re-calibration is 
allowed before using the BCI from time to time. 

D. Comparison on the Test Data 
We further examine the performance of the stable features 

on unseen test data comprising Segment 2 (see Fig. 2) of all 
available trials. To simulate the long-term recognition 
performance, the same inter-session leave-one-session-out 
cross-validation evaluation scheme is applied. The stable feature 
set remains the same as was found on the training data. The 
recognition accuracy using our proposed stable features as well 
as the referenced state-of-the-art features is presented in Table 
VI. The results are principally consistent with the findings based 
on training data set. Our stable features outperform the best-
performing referenced features by 2.54 %, 0.23 %, 3.12 %, 
1.92 %, and 1.62 %, for subject 1, 3, 4, 5, and 6, respectively. 

E. Limitation 
In this study, we have proposed and validated a stable feature 

selection method for EEG-based emotion recognition on a 
dataset comprising six subjects. Further studies are needed to 
conclude the performance on a larger dataset. We have taken a 
subject-dependent approach to finding the subject-specific 
stable features. Compared to our previous studies [34, 35] where 
we had taken a subject-independent approach, subject-specific 
stable features are found to be more effective. However, since 

the effective stable feature set is subject-dependent, to find 
which requires ample labeled affective EEG data recorded over 
a long course of time. The acquisition of such data may post a 
burden to the subjects. Although the stable features perform 
relatively better than the referenced state-of-the-art in the long 
run, the absolute recognition accuracy is still admittedly low. It 
remains an open question as to how we can effectively mitigate 
or even eliminate the need of frequent re-calibrations of the BCI. 

V. CONCLUSION 
An EEG-based affective BCI needs frequent re-calibrations 

as the affective neural patterns are volatile over the course of 
time even for the same subject, and intra-subject variance exist 
in the affective feature parameters. In this paper, we propose a 
stable feature selection method to select the optimal feature set 
that maximize the recognition accuracy for the long run of an 
affective BCI. The proposed method consists in modeling the 
feature stability by ICC, feature ranking and iterative selection 
of stable features. We hypothesize that unstable features 
contribute to the accuracy deterioration when the BCI operates 
without re-calibration over the course of time, and by using 
stable features, the recognition accuracy can be improved. We 
carry out extensive comparison between our stable features and 
the state-of-the-art features. In Simulation 1, we show the 
recognition accuracy of an affective BCI using the state-of-the-
art features, where the BCI is allowed to be re-calibrated from 
time to time. In Simulation 2, we simulate the long-term usage 
of an affective BCI and establish that accuracy deterioration will 
occur when the BCI operates without re-calibration. In 
Simulation 3, we analyze the performance of stable features 
selected by our proposed method. We demonstrate the accuracy 
trajectory when we iteratively include features into the selected 
feature subset. Experimental results show that recognition 
accuracy peaks at a small subset of stable features, and as more 

TABLE VI COMPARISON OF INTER-SESSION LEAVE-ONE-SESSION-OUT CROSS-VALIDATION ACCURACY ON THE TEST DATA BETWEEN USING REFERENCED 
STATE-OF-THE-ART FEATURE SET AND STABLE FEATURE SET SELECTED BY OUR PROPOSED ALGORITHM. MEAN ACCURACY (%) ± STANDARD DEVIATION (%). 

Feature Subject 
1 2 3 4 5 6 

STAT 36.79 ± 6.04 26.80 ± 3.87 26.88 ± 3.97 38.68 ± 5.92 28.38 ± 4.06 31.29 ± 7.76 
HOC 28.68 ± 3.11 24.51 ± 2.84 25.55 ± 3.87 28.62 ± 3.74 25.90 ± 2.67 27.23 ± 4.30 
FD1 30.92 ± 3.58 24.64 ± 3.56 25.95 ± 4.43 35.51 ± 5.57 26.41 ± 2.87 29.99 ± 5.22 
FD2 35.61 ± 5.47 26.44 ± 4.22 27.50 ± 3.57 40.54 ± 5.89 27.47 ± 3.49 31.82 ± 7.93 

HJORTH 31.65 ± 5.86 26.62 ± 2.80 26.82 ± 3.15 38.47 ± 5.85 26.76 ± 2.84 29.64 ± 3.78 
SE 26.28 ± 3.97 26.61 ± 5.40 26.64 ± 2.93 36.98 ± 8.46 28.89 ± 3.40 27.49 ± 5.36 

POW 33.41 ± 7.11 27.95 ± 3.66 28.04 ± 3.14 38.85 ± 8.02 27.65 ± 3.94 31.92 ± 7.68 
Ours 39.33 ± 6.13 26.52 ± 4.23 28.27 ± 3.72 43.66 ± 6.09 30.81 ± 5.11 33.54 ± 6.93 

TABLE VII FEATURE RANKING OF THE TOP 10 STABLE FEATURES AND THEIR RESPECTIVE ICC SCORES. 

Rank Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 
Feature Score Feature Score Feature Score Feature Score Feature Score Feature Score 

1 hoc1_T7 0.4921 beta_F4 0.2671 hoc9_FC5 0.2771 stat5_T7 0.7548 hoc2_FC5 0.1909 stat3_T7 0.3430
2 stat3_T7 0.4913 hoc31_T7 0.1751 alpha_F7 0.2630 stat3_T7 0.7443 hoc32_AF3 0.1570 stat5_T7 0.3331
3 stat5_T7 0.4302 hoc33_T7 0.1651 hoc10_FC5 0.2445 beta_T7 0.6914 hoc28_AF3 0.1469 beta_T7 0.2726
4 hoc2_T7 0.3557 hoc34_T7 0.1523 hoc11_FC5 0.2040 stat2_T7 0.6473 hoc29_AF3 0.1279 hoc1_T7 0.2030
5 mblty_T7 0.2547 hoc32_T7 0.1450 hoc3_T7 0.1973 se_T7 0.5098 hoc30_AF3 0.1194 stat2_T7 0.1872
6 stat4_T7 0.2057 hoc2_F4 0.1428 hoc4_T7 0.1911 actvt_T7 0.5098 mblty_F4 0.1086 mblty_T7 0.1544
7 cpxty_T7 0.1874 beta_F7 0.1413 hoc8_FC5 0.1607 hoc1_T7 0.4992 hoc8_F4 0.1048 stat4_T7 0.1438
8 hoc13_AF3 0.1815 beta_AF3 0.1269 mblty_F4 0.1439 hoc5_T7 0.4353 hoc19_AF3 0.1015 hoc25_T7 0.1334
9 hoc29_AF3 0.1749 hoc2_FC5 0.1249 alpha_AF3 0.1398 alpha_T7 0.4272 hoc33_AF3 0.1011 stat6_T7 0.1233
10 stat6_T7 0.1652 hoc35_T7 0.1173 stat4_F4 0.1385 hoc4_T7 0.4161 hoc34_F4 0.0980 hoc26_T7 0.1173
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unstable features are included, the recognition accuracy quickly 
deteriorates. The experiment results validate our hypothesis. 
Comparisons between our stable features and the referenced 
state-of-the-art features show that our stable features yield better 
accuracy than the best-performing referenced features by 1.83 % 
– 5.85 % on the training set, and by 0.23 % – 2.54 % on the test 
set. 
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